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THE REVERSIBILITY THEOREM FOR THIN AIRFOILS IN SUBSONIC AND SUPERSONIC FLOW

By CuinTon E. BrROWN

SUMMARY

A method introduced by Munk is extended to prove that the
lifi-curve slope of thin wings in either subsonic or supersonic
flow is the same when the direction of jflight of the wing i
reversed. It is alsa shown that the wing reversal does not change
the thickness drag, dampmg—m—roll parameter (', or the
damping-in-pitch parameter Cu,

IN TRODLCTION

The present report makes use of and extends a paper by
Munk (reference 1) in which simple dynamic concepts are
used to prove that the lift-curve slope and thickness drag of
supersonic airfoils with supersonic edges are the same when
the airfoil is flown in a reversed direction. This extension
of Munk’s work provides a proof that the thickness drag,
lift-curve slope, damping in roll, and the demping-in-pitch
parameter C,, remain the same when any sirfoil orsystem
of airfoils is reversed in both subsonic and supersonic flow.
The theorem applies to cases in which the trailing-edge
velocities are finite; no restrictions are placed on plan form.

The reversibility theorem for drag was first obtained by
different methods by Von K&rmén (reference 2). Hayes has
treated the lifting case for a restricted series of wing types
at supersonic speeds. (See .references 3 and 4.) Harmon
(reference 5) has extensively treated the stability derivatives
for a restricted group of plan forms at supersonic speeds.

PROOF

Under the assumptions of the linearized potential-flow
theory, it becomes possible to obtain a great simplification
of subsonic and supersonic lifting-surface problems. The
use of the linear equations of motion allows the boundary
conditions on a lifting surface to be satisfied on a plane near
the wing surface and permits the use of the superposition
principle. Consider a set of Cartesian coordinates z,,z in
which the z-axis is taken in the flight direction and the
z-axis, in the vertical direction. The boundary conditions
become a stipulation of the vertical-velocity distribution
over the projection of the wing surface on the zy-plane. As
a result of this simplification, the effects of camber, twist,
apngle of attack, and thickness may be treated separately.

For the complete comprehension of the anslysis to follow,
it is necessary to understand the manner in which drag
ultimately appears in. the flow field. Two distinet forms of
drag may be found: one associated with a trailing vortex
system, the other with the production of waves. In the case

of a vortex wake, the drag shows up in the wake a great
distance downstream in the form of a pressure defect which,
when integrated over a plane norma! to the flight path,
yields the drag. This result is identica! with that of incom-
pressible flow. The drag produced by wave formation shows
up in the field as & combined momentum and pressure defect;
of course, the thin-airfoil theory predicts a wave drag only
at supersonic speeds. In all cases, the total resistance mey
be obtained by integrating the momentum transport across
the sides of a box enclosing the wing. It is often convenient -
to place the sides of the box at infinity and allow the top and
bottom to approach the plane of the wing. This process
yields for the drag

——2 ffa"’a"’dyd W

where p is the stream density, ¢ is the disturbance potential,
and the integration taken over both upper and lower sides
extends to infinity. Note that the drag is independent of
the main stream direction but depends only on the disturb-
ance potential ¢. In the usual problems, singularities accur
on the wing leading edges and care must be taken with the
integration if the quantities in the integrand of equation (1)
are eveluated on the ry-plane. Neglect of the singular
behavior leads to the omission of the leading-edge suction
forces. For additional information on the fundamentals of
the linear theory, see references 2 and 6.

Thickness drag.—Consider a symmetrical airfoil at zero
angle of attack. The potential of the flow may be expressed

as
¢|'_= I’I + ¢1 (2)

where T is the stream velocity and ¢, is the disturbance
potential which satisfies the boundary condition

1/ _dz '

where 5—; is the airfoil surface slope. In addition, the poten-

tial must satisfy the usual conditions for physical flows such
as the vanishing of the perturbation velocities at infinity for
subsonic flow and undisturbed flow ahead of the foremost
Mach waves in supersonic flow. Assume the mein flow
direction to be reversed. The new potential would result:

=—V2z+¢ %
669



670

where ¢y satisfies the condition
1 (0 dz e
v(3).—2 )
By superposing the solutions &; and ¢1 & new potential is
formed:
By=0:+}¢» ®

Such a step is quite permissible inasmuch as the differential
equation governing the flows is independent of the sign of the
stream velocity. The vertical velocity (3

=i

zero and thus a boundary condition for a plate of zero
thickness is satisfied. Inasmuch as there are no infinite
induced velocities at the edges of the resultant wing and
therefore no edge forces, the flat plate can produce no changes
in stream momentum; hence, the momentum or pressure
defects a great distance downstream in the flow must be
cqual to those upstream. Any momentum or pressure de-
fects at infinity upstream atise from the reversed airfoil
potential, and the momentum or pressure defects a great
distence downstream arise only from the original dirfoil
potential. Since the drag of cachairfoil is equal to the mo-
mentum or pressure defects in its wake, the drag of the two
airfoils must necessarily be equal. It is well known that the
drag of symmetrical bodies_in subsonic potential flow is
zero; hence, the reversibility of drag is most pertinent to
supersonic flows. The preceding proof and discussion fol-
lows essentially that of Munk (reference 1).

Lift-ourve slope.—Inasmuch as the lift~curve slope of a
wing is independent of camber and twist, it is sufficient to
treat a flat-plate airfoil at an angle of attack . Unlike the
symmetrical-drag case, however, a certain indeterminacy
exists in the potential whenever subsonic trailing edges are
present. Subsonic edges occur when the component of
stream velocity normal to the edge is subsonic. In order to
remove this indeterminacy it ianecessary to specify the circula-
tion. The use of the Kutta condition is an appropriate means
for this process because, in effect, an additional boundary
condition is imposed. Thisrequirement., that the velocities
at the trailing edge be finite, is indeed a physical condition
arising from the fact that the boundary layer, always
present at trailing edges, would separate from the edge rather
than accommodate the high adverse accelerations around the
edge. Itisexactly the Kutta condition which leads to unique
solutions and which is necessary to prove the reversibility
theorem.

The potential of the flat-plate eirfoil may now be written:

&=Vz+¢ ()]

where ¢; is the disturbance potential satisfying the conditions
that the trailing-edge velocities are ﬂmte and the boundary
condition

becomes

e ®
The drag of the wing can be written:
Oy=La—F, - N (9)
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where F is the component parallel {o the surface of the re-
sultant force, usvally known in lincar theory as ihe leading-
edge suction force, and L is the lift force.

As in the drag case, the roversed-stream velocity produces
the potential

By=—Vz+ds

where ¢, satisfies the Kutla condition and the boundary
condition

(10)

FE -
The drag is now o
Dy=ILsa—F, (12)

The superposition of the potential ¢, on ®, results inthe flow
over a flat plate of zero angle of attack.
The drag of the combined airfoils is now

Dy=Fy—F (13)

provided the superposition has not changed the Jeading-edge
suction forces F; and ¥;. Thase suction forces have been
shown (references 7 to 9) to be depmdent. on the asymplotic
distribution of vorticity as the edge is approached; suction
forces are obtained only when the vortex strength approachies
infinity at the edge, this condition corresponding to infinite
upwash velocity around the edge. Inasmuch as the super-
position of a solution having finite-edge velovities does not
alter the asymptotic strength of the singularities at the cdge,
it follows that the edge forces will be unchanged by the
superposition.

‘When & momentum balance in the stream is formed, the
upstream momentum and pressure defects in the combined-
airfoil case differ from the downstream momentum and
pressure defects by the difference in the suction forees D).
The upstream momentum and pressure defects are, however,
equel to D,, whereas those downstrcam are equal to D,
Therefore,

Dl—-D’=F’—F1 (14)
or from equations (8) and (12)
Loa=L;x (15)

The lifts I, and L, are equal and, therefore, {he lift-curve
slopes are equal Obviously, the lifi-curve slopos of cambored
and twisted wings are also unchanged when the airfoil is re-
versed. It is important to note that the drags are not, equal
unless the suction forces are zero or cancel.

In reference 4, the conclusion is reached that the Iift
theorem. canuot be a general one; however, it appears that
this conclusion was deduced from an equation of insufficient
generality. Indeed, the analysis of the prosent report shows
the lift theorem to apply to all plan forms so long as the
Kutta condition is applied to subsonic trailing edges.

]Junpmg in roll—The proof for the reversibility of damp-
ing in roll proceeds in the same manner as that for the lifi.
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The rolling moment of the thin wing may be expressed as

follows:
L= [ apyds (16)

where Ap is the pressure difference between the upper and
lower surface and S is the wing area.

The drag of the linearly twisted wing used to represent
the rolling flat plate is

D= fs Apra dS—F, )

The drag may be expressed as a function of the rolling mo-

ment inasmuch as a=z—%g where p is the angular velocity in

roll. For the twisted wing,

D\=£ L/—F (18)
The drag of the reversed airfoil is then

D=§ L/ —Fy (19)

Superposing the disturbance potential of the reversed airfoil
again cancels the wing slopes, and the resulting momentum
change at the combined airfoils becomes

D3= .Fg—Fl (2 0)
Establishing the conservation of momentum in the flow, as
was done for the lifting case, gives the result:
sz

2r
7L 21

Therefore, the rolling moment for the reversed airfoil is the
same as that of the unreversed airfoil. It follows then that
the rolling-moment derivative (' 1, for any wing is unchanged
by reversal.

Steady pitching moment.—The pitching moment of a wing
undergoing a steady pitching velocity ¢ about the point
2o may be written

M= fscx—xn)zspds 22)

where z, is the reference point about which moments are
taken. The drag of the cambered-wing surface representing
the steady pitching motion is

D= f ApadS—F 23)
and the local angle of attack for such a wing is
a=¢q E_Y—T—z" (24)

956646—51-——14

Hence, the drag may be expressed from equations (22) to (24)
as follows:

D=V M—F (25)

Performing the superposition of reversed potential and origi-
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nal potentials yields an airfoil of zero angle of attack; the =

momentum balance, as for the steady rolling case, cancels the
suction forces to leave:

N4 L =211, (26)

37
The pitching moments of the two airfoils are the same and,
therefore, the damping-in-pitch parameter Cn, is unchanged
by a reversal of the wing.

DISCUSSION

Inesmuch as the analysis presented is unrestricted as to
plan form, it follows that any system of airfoils will obey
the reversibility theorem; this does not allow for the reversal
of the individual airfoils but only for the reversal of the
complete system. Indeed, the same result holds for groups
of airfoils in different horizontal planes, provided the hound-
ary conditions for each wing are satisfied in the plane of the
wing. It should be noticed that the pitching-moment

coefficients, lift coefficients due to pitching, and the constants

arising from camber such as o are not generally the
same when the wing is reversed.

LaxcrLEY AERONAUTICAL LABORATORY,
NastroNan Apvisory COMMITTEE FOR AERONAUTICS,
LangLEY FiELD, Va., June 26, 1949.
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